152 research outputs found

    Nonlinearly-enhanced energy transport in many dimensional quantum chaos

    Get PDF
    By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. Parallel numerical simulations and analytic theory demonstrate that the interplay between nonlinearity and Anderson localization establishes a perfectly classical correspondence in the system, neglecting any quantum time reversal. The resulting dynamics exhibits a nonlinearly-induced, enhanced transport of energy through soliton wave particles.Comment: 4 pages, 3 figures, submitte

    Time-reversal focusing of an expanding soliton gas in disordered replicas

    Full text link
    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schroedinger equation.Comment: 7 Pages, 6 Figure

    Dispersive shocks and complexity of nonlinear waves

    Get PDF

    Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schroedinger equation

    Full text link
    We characterize the full family of soliton solutions sitting over a background plane wave and ruled by the cubic-quintic nonlinear Schroedinger equation in the regime where a quintic focusing term represents a saturation of the cubic defocusing nonlinearity. We discuss existence and properties of solitons in terms of catastrophe theory and fully characterize bistability and instabilities of the dark-antidark pairs, revealing new mechanisms of decay of antidark solitons.Comment: 8 pages, 10 figures, accepted in PR

    Crossover dynamics of dispersive shocks in Bose-Einstein condensates characterized by two and three-body interactions

    Full text link
    We show that the perturbative nonlinearity associated with three-atom interactions, competing with standard two-body repulsive interactions, can change dramatically the evolution of 1D dispersive shock waves in a Bose-Einstein condensate. In particular, we prove the existence of a rich crossover dynamics, ranging from the formation of multiple shocks regularized by coexisting trains of dark and antidark matter waves, to 1D soliton collapse. For a given scattering length, all these different regimes can be accessed by varying the number of atoms in the condensate.Comment: 4 pages, 5 figure

    Lifetime statistics of quantum chaos studied by a multiscale analysis

    Get PDF
    In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on a Silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines graph theory, energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory with an excellent level of agreement.Comment: 4 pages, 6 figure
    • …
    corecore